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Considered is the question of possible simplification of the so-called 
relations of elasticity in the theory of thin shells. It was thought that 
the simplest version of such relations (often referred to as the first 
approximation of Love’s theory) could lead only to such an error which is 
of the order of O(h/R) (h and II are the thickness and the smallest of the 
principal radii of curvature of the shell). In this connection an opinion 
was expressed [ 11 that the simplest elasticity relations for shear 
forces and twisting moments can lead to a more significant error. In the 
helical shell example of [ 2 1 there are shown the essential defects of 
the solution obtained on the basis of the simplest elasticity relations*. 
These defects, apparently, are connected with the simplification of the 
elasticity relations for shear forces and twisting moments. The simplest 
elasticity relations for normal forces and bending moments were not 
subjected to criticism; it appeared they should not contribute signific- 
antly to errors. 

The present work establishes that this is not quite so. Initially it 
is shown how to obtain complete relations of elasticity on the basis of 
the widely known results of Love, and there is derived a supplementary 
(to the sixth’s equilibrium equation) algebraic equation relating the 
shear forces with the twisting moments. Then it is determined which 

simplifications of the complete elasticity relations are permissible for 
a cylindrical shell. It is established with the example of such a shell 

that the inclusion of the usually ignored quantities in the elasticity 
relations for normal forces and bending moments can essentially affect 
the solution of some problems. 

* Reference [ 2 ] came to the author’s attention after the present work 
was completed for publication. 
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The investigation carried out leads to the elasticity relations for 
an arbitrary shell which are basically not unlike those given in [ 3 I. 

1. Let us refer to the linear theory of thin shells with constant 
thickness as presented by Love 14 1. We will retain part of the notation 
used in [4 I and will change the remaining part for convenience. In the 
first and third row below are shown notations used by Love, while in the 
second and fourth row are given the corresponding notations of this 
paper: 

2h; a, (3; A, B; u, v, w; c7, a; e,, , e,!,, es,, 5 

k a,, a,; Al, A,; Ult 4, u3; m, T*; el, e2, e12; v 

Xx, Yy, 1,; Sly 829 Gi, HI, H2; X', I-', Z’, L’, M’ 

01, 021 612; T 12, -T21, Mi, -M12, J421; PI, p2, p,, %, 512 

Correct (within the limits of linear theory) values of the components 
of deformation at any point in the shell are determined by Formulas (30) 
derived in Chapter 24 of 14 1. ‘lhe first hypothesis of Kirchhoff-Love 
should be formulated as follows: in the three formulas for el, e2, e12 
mentioned above, one can neglect c, 7, 5, i.e. in defining el, e2, e12 
one may assume that the section of the normal to the middle surface of 
the shell constrained between its outer surfaces remains straight in the 
process of deformation, is normal to the middle surface and remains con- 
stant in length, On the basis of this hypothesis, we have 

.@i - zxi 

ei= 1 -_zl& (1.1) 

where i = 1, 2 as in the following. In the last formula (see [ 4 1 , 
Chapt, 24, Equations (11)) 

Hence, neglecting quantities of higher order than the deformation of 
the middle surface (see [ 4 1 , Chapt. 24, Equations (211, (26)) we obtain 

and consequently 

(1.2) 
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@lalltitieS Ei9 Ki’ W, 7 are determined from the displacement compo- 

nents uI, u2, u3 in the fok (see [4 1, Cbapt. 24, Equations (211, (26)) 

1 8% ug-_i aAi Ug 
____ 

Ei = Ai 6 + diA,_i i3a3_i Ri (1.3) 

1 a 

Xi = qk?& (1.4) 

(1.5) 

Let US introduce the quantity r* = r + o/R,. From the equalities 

(1.51, (1.6) and one of Codazzi's formulas 

. . . 
it IS easy to establish 

By means of simple transformations it is possible now to 

the right-hand side of Formula (1.2) in a clearly invariant 

to the transposition of notations of the coordinate lines 

represent 

form relative 

or in a more convenient and also clearly invariant form for the follow- 

ing 

e12 = 0 
I-z/R% 1--z/ RI 

ll-z/R1 +0 ‘I-z/.Rz -t5il_I:iRI-.~1_~,RB)1 (1’7) 

where 

(1.8) 

and where o = y + 02, as follows from Formula (5). 

On the basis of the second Kirchhoff-Love hypothesis, stating that 
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at any point in the shell the stress u3 is considered negligible* com- 
pared to the larger of the u1 or u2 stresses, and in view of Hooke’s law 
we have 

ai = & (ei + Ye,-,), 
E 

612 = 2 e12 (l-9) 

Substituting ei and e12 into (1.9) from Formulas (1.1) and (1.7) we 
obtain 

‘Ihe forces and moments per unit length are determined from the equal- 
ities 

l/d ‘/eh 

Ti = Ti,3_i = ( Qi,s__i ( 1 - _“) di 

‘!$ 

-;j2h 
\ “3-i I( 

‘:,h (1.11) 

Mi,a-i = \ ci,3-i [I -- $--) zdz 
-‘/th 

3-t, 

the 
Substituting here in place of ai and Ui 3_ i the right-hand 

equalities (1. lo), we obtain 
t 

&i + YE3-i - 12i3, (Xi - X3-i) (Xi% - hi) 

I 

Ti.3-i = 2 (1”: yl 10 + ,i+ 
_f 

(Xi - X3-i) [rh - Wi (Xi - X34)]) 

Mi = _ Eh2 

12 (1 - V) [ 
I2 (Xi + WQ-i) + z (Xi - X3-i) Ei - 

sides of 

(1.12) 

Mi,p_i = - 24~~y,[[2-(l -Fj (1 +~j][ht-((Xi-X3-i)OiliXio} 

l It is understood, that we are excluding the case when the shell is 
loaded on both outer surfaces by equally distributed nowal forces. 
which referred to the unit of the middle surface, have equal magni- 
tude but opposite directions. 
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where 

h 
Xi=qp yi = 1 - xi-l jn ‘s 

ia 1 

whereby if Ri = “(xi = 01, then yi//3i = - 1 since 

and consequently 

7i 
--pi++.. 

yi 
G = - 1 + 0 (PJ, I + ri / pi = - 4 pi (1 i- 0 (p,)) 

and then Formulas (1.12) can be expressed in the form 

(1.13) 

(Xx? 
M i,3- 

Formulas (1.12) for Ti 3_ i, Mi 3_ i appears the expression /ZP - 
x3_ i)Oi equal to hr*'- XiW. ?herefore, the quantities T, 3_ ir 
i are linear functions of the two quantities ti and r*. ’ 

'Ihe forces and moments per unit length are related by the conditions 
of equilibrium of the shell (see [4 1, C&apt. 24, Equations (45) and 
(46)) 

& Aa-iTi + $ %Ai 

1 3-i 
AiTs--i,i + Ti,g-i aa --Ts-iT 

3-i 

aA3-i - &_Lj3_i (2. _ pi) =(-j 

2 i 

(1.15) 

84 A,-iMi + 3s %A, 

t 3-i 
&+f+-i,i + J4i.s~i aa - - M3_i 

3-i 

‘! _AiA3_i(~~+j&)=0 
i 

(1.17) 
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Ml2 -- 

Rl 
- 2 - T,, + T,, = 0 (1.18) 

‘Ihe fulfilment of equality (1.18) is guaranteed by Formulas (1.11). 
If one substitutes into (1.18) the quantities T,,, Tzl, M12, M,, from 
(1.11) then, as is known, it will become an identity (the same will 
apparently take place by using (1.12)). lhe second algebraic equality 

relating TI,, T2I, MI,, M21 must follow from the fact that these four 
quantities are linear functions of the two quantities o and r*. 

Two independent algebraic equalities relating T,,, Tzl, M,,, M,, can 

be obtained as follows. We will replace in Formulas (1.12) for T,, and 
T21 the quantity u by the sum OI + 9, and we will consider them as a 
system of equations relative to UI and o2 (it is easy to see that its 
determinant is positive for RI # R,). Solving for oI and o2 from the 
system, we can substitute these expressions into Formulas (1.12) for MI, 
and M81. Thereby the terms containing r are eliminated and the two de- 
sired equalities are obtained: 

[~-~+~(~+~)-~x,cx,-X,,]T21-{*-~++((1+~)+ 

T-2 x1-x2 
+12pz x1 - [x,” + g (Xl - X2)2]} Tl2 = ii; - &) [E + E - s2 (Xl - X2)2] M,* 

(1.19) 

~~-~+~~~+~,-~x,(x,-x,)]T,,-~jl-~f~(~+~)+ (1.20) 

r1 x2-- x1 
+m xz __ [x12 + ; (X2- X1)2]} T21 = (t-;) [; +;- &(X2 - X1)2] Mzl 

These coincide only in the case when R, = R,. 

MultiPlYing (1.19) bY xx, (1.20) by XI. adding the results and divid- 
ing out x2 - XI, one obtains (1.18). Adding (1.19) and (1.20) we obtain, 
after reduction by x2 - x1 

$ (Xl - X2) Tl2+ ~21&3 + $2~ %(I +$) T,,] zzz 

= -%~l-~2)z] (Ed,,)--[&(i +g).+;(&-(T21 _ Tlz) 

(1.21) 

This equality is fulfilled also when R, = R,, which can be seen 
directly by using the corresponding formulas (1.12). If in (1.21) 

T21 - Tl2 is replaced, in accordance with (1.18). by the expression 
-1 

M2 lR2 
1 

- “12Rl- , and if we limit ourselves only to the main terms (this 
is equivalent to a replacement in (1.21) of yI&?,, y2/p2 by -1 and of 
the M21 - MI,- factor by -2; see above ), then instead of the exact 
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equality (1.21) we will obtain the approximate equality* 

Thus the equalities (1.18) and (1.21) (or the approximate equality 
(1.22)) can be considered as two independent algebraic equations always 

relating T,,, T21, 112, Y,l. It follows from (1.21) and (1.181, as well 
as from Formulas (1.12). that to each umbilic point of the shell’s sur- 
face correspond equal values of the quantities Ml,, M,, and Tlz, Tzl 

CM,, = $1, T,, = TZl). 

‘Ibus, on the basis of the Kirchhoff-Love hypothesis, the components 

el* 5 e12 of the shell defo~ation are determined by the quantities 

Cl, e2r Of, 02, Xl, “2, r which are expressed in terms of the displace- 

ments uI, u2, u3 in accordance with Formulas (1.3), (1.4), (1.8). ‘ihereby, 
the forces and moments per unit length (except N, and N,) are related 
with the quantities 61, cZ, . . . , T by Formulas (1. U), while among them- 
selves they are interrelated by five differential equations (1.15) to 
(1.17) and two algebraic equations (1.18) and (1.21) (or by the approxi- 
mate equation (1.22)). 

An important question arises regarding the possibility of simplifying 
the relations of elasticity (1.12). All existing versions of the theory 
of shells based on the Kirchhoff-Love hypothesis are dependent on the 
choice of certain approximate relations of elasticity. A rigorous solu- 
tion of this question requires evaluation of relative discrepancies be- 
tween the solutions (i.e. values of displacements and stresses) of an 
arbitrary boundary-value problem in the theory of shells based on the 
relations (1.12) and the simplified relations of elasticity. It is not 
clear how such an evaluation can be made for a shell of arbitrary shape. 
However, certain conclusions can be made referring to a cylindrical 
shell. 

2. For the cylindrical shell the equalities (1.15) to (1.17) without 
loading terms, the relations of elasticity (1.12), and Formulas (1.3), 
(1.4), (1.18) yield a system of three differential equations 

l It differs from the nsupplementarYR equation derived in [ 1 1 , Equality 
(1.22) is fulfilled exactly, if in the corresponding formulas (1.12) 
only the main terms are considered, i.e. if it is assumed: 

2 (1 f Y) Ti,s_i = Ek [O - ‘ill (X1- X3-_-i) kz] 

24 (1 -t- Y) jq+i = - Ek’ [2kT + XiO3_i - (xi-2X3_i) oil 
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Lj,U, + Lj2U2 + Lj,Us = 0 (iA, 2, 3) (2.1) 

where Ljk(j, k = 1, 2, 3) are the following operators forming a synxnetric 
matrix: 

L,, = 2 g + (1 - 4 (1 - r> & t L,, = (1 + y) a& 

L,,=-22Y~+28~+(1--v)r~, L,,=(1+4& 

L,,=2~+(1-v)(1+3p)~~, LT,=-2&+(3-9p~& (2.2) 

L~~=-2Y~+2p~~+(1--)T~~, L,,=-2&+(3--)P$& 
J 

L~~=2(1-r)-4~~+2~~~+[(3+~)P-(~--)rl~~-2r~ 

(Rc and R+) are the coordinates in the axial and circumferential 
directions; @= &,, y = yz). 

Let D be the determinant with the elements Ljr, and Aj, the corre- 

sponding minor of the Ljk element. 'Ibe general solution* of the system 
(2.1) can be defined by the equations 

where @ is the general solution of equation Da= 0. In expanded form 
this equation, reduced by the factor 4(1 - v)B and in which the components 
o(p) are neglected in the coefficients, becomes 

* With the exception of pure elongation and torsion which are not con- 
sidered here. 
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Without the terms 0(/3) in the coefficients, the expression L,@ has the 
form 

‘Ihe same equation (2.3) is obtained if in the relations of elasticity 
(1.121, neglecting small quantities (see (1.13)), it is assumed that 
yi/pi = - 1 (which is equivalent to neglecting the quantities 0(/3,) and 
the last terms in the brackets in the expressions for Mi and Mi 3_ i), 
i.e. if (1.12) are replaced by the following: 

Ti = Eh rei 
1 - v2 , 

-c V&s-_i +- & (Xi - X3-i) (Xi&i - hxi)] 

l’i. 3-i = 

(2.5) 
&Ii?= - 

12 (yv2) [/L (Xi t- V-i) - (Xi - X3-i) &I 

313, 3-i = - 2/t (y: v) [2hT -TV Xi6Ja-i - (Xi _- 2X:3-f,) Oi 
1 

1 

These formulas are essentially not different from the corresponding 
formulas derived in [ 3 1 . Formulas (2.5) for Ti 3_ i and Mi 3 _ i can be 
written in the form 

* 

Ti, :3-i = $&q [c!J - A (Xi - X,-i) (In* - Xi”)] 

Mi, 3-i = - && (2/E* - X$0) 

In the presence of the relations (2.5)) the exact equation (1.18) and 
the approximate equation (1.22) are valid. In place of (1.22) the follow- 
ing equation is fulfilled exactly: 

(it is obtained from (1.21) if it is assumed that yi/Pi = - 1). ‘Ibe 
change in the operators L., 
replaced by Formulas (2.5j 

which occurs when the relations (1.12) are 
consists merely in that the quantity y is re- 

placed by -/3 (this does not disturb the s-try of the matrix 11 Lj& 11 , 
i.e. some coefficients of the L j& operators remain unchanged while others 
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change by the amount o(p), which is negligibly small compared to the 

values of these coefficients. 'Ihe same happens to the operators by means 

of which (through the function a) are determined the displacements and 

the internal force factors, and consequently similar insignificant changes 

occur in the boundary conditions expressed by means of the function 3. 

Taking all this into account, and based on the fact that the indicated 

small changes of the coefficients (of the order of o(p)) in the equation 

for 8 and in the boundary conditions expressed through Q lead only to 

negligibly small changes of the function Q itself, we conclude that for 

the cylindrical shell one can always replace the relations of elasticity 

(1.12) by the approximate relations (2.5) without essential error. 

Further approximations of the relations (2.5) for the cylindrical 

shell can lead in particular cases to significant errors in the solution, 

as will be shown below. 

3. Rejection of any (secondary) terms in Formulas (2.5) for Ti 3_ i 
and M i 3_ i (here are considered the second and third terms in brackets 

of the;e formulas) leads to a violation of the sixth equation of equi- 

librium or to the appearance of stresses in the displacement of the shell 

as a rigid body. Naturally, these defects can lead to substantial errors, 

as was noted in [l 1. Therefore, let us consider the more delicate 

question regarding the possibility for simplifying Formulas (2.5) for Ti 
and Mi. Let us refer to the following relations of elasticity, which 

differ from (2.5) only in the formulas for Ti and W.: 
1 

Ti z & (Ei -; V&:3-i) 

(3.1) 

If one accepts these relations, then in the equations (2.2), in addi- 
tion to the replacement of y by -p (which differs from y only by o(p)) 

there will occur a change in certain coefficients in a number of oper- 

ators L jk by the quantity O(P) ( 

see p. 784). 

such changes can substantially affect a'; 

Indeed, we will have 
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(matrix 11 Ljk 11 remains symmetric). 

Then, instead of Equations (2.3), (2.6) one obtains the following: 

In the case when the shell is acted upon by a normal pressure 
q = q([, g5) we will have the following, instead of Equations (2.31, (3.2): 

L,@ = 6 (1 -1 v) H4q / h3.E 

L,@ = 6 (I + v) H4q / lPE 

(3.4) 

(3.5) 

If one chooses q and the boundary conditions for the shell such that 
in the solution of Equation (3.4), corresponding to this choice of the 
boundary conditions, the term with the large parameter 6-l would vanish, 
it would then be natural to expect that a significant difference in 
certain terms containing sixth and fourth derivatives in Equations (3.4), 
(3.5) (see also (2.4), (3.2)) will substantially affect their solution. 

In view of this, let us assume 

4 = 39, (35% - 6 - v) cm 2 ql (3.6) 

Then the particular solution of Equation (3.4) will be 

(the small term with the &multiplier on the right-hand side of @ation 
(3.7’) is attributed to the small terms in the L, operator coefficients 
from (2.3); the reason for the retention of these small quantities is 
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explained in the footnote*). 

‘lhe following displacements, forces and moments per unit length cor- 
respond to the particular solution (3.7): 

zQ= S(1 -V~)j$$COSZ~, u,=6(1-~~)~~(~~-1-; 
! 

sin 2q 

u3 = 12 (1 - V’) Sk? (6” - 1) cos 2qp (3.8) 

T, = i 6 (1 - Y”)E -I- 5 (1 - Y) (7 + V)-J Rq, cos 2cp 

TX, = - 3 (I- y) X&j sin 29, MI = - R?q, [“/z - v (3E2 - 3 + l/a%+] cos 2v 

MI, = 3 (1 -Y) R2q& sin 2rp, 11’1 = ; 
C 
‘2 + t?) = 6Rq& cos 2~41 

T, = Rq, (3E2 - 6 + Y) cos 2rp, T,, = 0 (3.9) 

M, = - R2q, (3 + 2v - 3~2) cos 2~44 MS, = 3 (1 -v) B2q,F, sin 2rp 

A’s = + (‘3 + ‘C$j = Rg, (9 + v - @,2) sin 2p, 

Formulas (3.8), (3.91, with the exception of T,, contain no small 
terms which, compared to the included terms, are as small as !t2/R2 is 
small compared to unity. But in the derivation of these formulas the 
small terms were considered when the main terms were mutually eliminated. 

The small term in ?‘, is retained because it is of the same order of 
magnitude as the remaining forces. 

At the boundaries of the shell (for 5‘ = -f p = f l/ZR , t is the 
length of the shell) we obtain from (3.9) 

* If in the definitions for 0 and eZ + vc I one considers only the usual 
main terms in the operators Aj~, and only the main terms in Formula 
(3.7). we will then obtain w = 0, t: 2 + VEX = 0. Retention of the small 
term in Formula (3.7) significantly affects the value of T2. Equation 
(3.9) for T2 ia obtained with this term included. Even though Tz 
appears negligibly small compared to T1, its change prevents fulfil- 
ment of the equations of equilibrium. Therefore, in order to avoid 
possible difficulties, the small quantities are retained in EQUatiOUa 

(2.31, (3.2). (3.7) and below in the equation for @,,. 
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T, = 1s (1 - v”) I?* / A” +- l/*-(1 - v) (7 + v)] Ng” cos 2rp 

T,, - M,, / H = T 6 (1 -Y) Rg,p sin 2~ 

M, = -- H2qo [“jz - v (3pZ - 3 + l/fV)] cos 2c# 

K] + (1 / R) (t&f,, / dq) = + 12 (1 - v) Rq,p cos 2fp 

(3.10) 

Consequently, assuming the elasticity relations iZ.S>, then for the 
cylindrical shell subjected to the pressure (3.61 and with the boundary 
conditions (3.101, we obtain the displacements (3.8) and the forces and 
monznts per unit length (3.9). Thereby, the state of stress of the shell 
is practically determined by the force T,, i.e. the stresses correspond- 
ing to the forces T12, N,, T2, Tzl, IV, and the moments M,, M,,, IM,, Al,, 
are negligibly small compared to the stress corresponding to TI. ‘Ibis 
stress is crl = Eh(f 1 f v+ql - l2) = TJh. 

In passing we will show how for an arbitrary shell the streases ul, 

a2’ “12 cw be .&xpressed in terms of the forces Ti, Ti 3_ i and the 
moments Mj‘ iii 3_ il if these forces and moments are determined from 
(2.5). From I& first formula (1.10) and the first and third relation 
(2.5) (if t i’ Ki are expressed in terms of Ti, dii by means of these re- 
lations) for z = f h/2 we have 

Therefore, if Ti and Mi are determined according to (2.51, then these 
stresses can be computed by the usual formula 

with a negligibly small error as compared with the largest stress ol, u2 
(for fixed aI, a2 and z = f h/2). 

Furthermore, inasmuch as z/Ri << 1, Formula (1.10) can be replaced by 
the approximate equation 

(the last term in brackets is retained for the case if o = 0, i.e. 
#I = - 02>. Hence, for z = f h/2 

E 

Q2 = 2 (IfV) r 
0 rf:; [(x1- Xa) (Ml-- wd- 2hzl I 
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From this equation and 

Eh 
T1z-kT21= 1 +v 

1 -&-- x2)2 
I 

resulting from the second and the fourth formula in (2.5). it follows 
that for t = i h/2 

Tl2 + TZl 6 M1lR1-l -- M21R~-1 
c 
012 = 

2h +F RI-l - &-I 

(for T,, = Tzl, kf,, = ,Ql this formula becomes the ordinary formula for 

*12)* 

Let us turn now to the relations (3.1) and Equation (3.5), where q is 
determined from (3.6). The particular solution of Equation (3.5) is 

The following quantities correspond to the fnnction Q1: 

u,=~(I-v~)~Ecos~~, ~2=6(1-~‘) z(E2--1 - $vjsin2r+ 

u3=12(1-vyh~ R4qa (52 - 1 - ;J cos 2q (3.11) 

T,= 6(1-v2)~+$(1-v)(7+~)+~(3~a-v)]Rq,cos2~ 
z 

T12 = - 3Rq& sin 2qp 

M, = - R2qo[2 - v (3E’ - 3 - -$‘I cos 2~, MI,==3 (l-_y)R2qJ sin 2~ 

N, = 6Rq& cos 2~ (3.1) 
T, = (3E” - 6 - v) Rq, GOS 29, T,, = - 3vERq, sin 29 

M a = - R2q, (3 + h/2v - 3c2) cos 2rp, M,, = 3 (I- v) R2q& sin 2rp 
IV, = (9 + 2v - 6E2) Rq, sin 2~ 

In (3.11) and (3.12) there are no tenus of the same order of magnitude 
as in (3.8), (3.9). Quantities ul, MI,, A’,, T,, kzl and the main part of 
Tl are unchanged. For 5 = f p we will again have the fourth equation 
(3.10), while the remaining equations (3.10) axe replaced by the follow- 
ing: 
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T, zzc 
I 
6 (r - .$ + ; (1 -Y) {i + v) + Y (3p2 - v)] Ry, cos 21p 

T,,- F = f 3 (2 - v) Rq,? sin 2~, M, = -R2q, [2 - v (3+3- $-)]cosQ 

In order to obtain a solution of Equation (3.5) which corresponds to 
T,, TIz, N,, M,, MI2 according to Formulas (3.11, satisfying all condi- 
tions of (3.11, we add to Qpl a correspondingly chosen solution QO of the 
homogeneous equation (3.2). The function a,, can be expressed in the form 

Here* 

k2.5x, If,,_ (f/3-/x-)(I +3/2x2), k,=($fi+)(1 -3/2x2> 

(x” = 3 (1 - v”) R2 / P) 

and the constants A,, A,, B,, B, must be chosen such that Tl, T12, N,, 
M,, M,, (quantities corresponding to (PO which will be denoted by T,O, 

TWO, . . ..I satisfy the conditions 

Tz" = Y(Y- 3p~)~g~~osz~, Ml0 =- 112% (v” - f/f) cos 29 

Ts2' - M120 ,t R = +- 3vRq,p sin 2rq, N,’ + (I/ R) dM,20 / dy -= 0 
(3.14) 

for [= fp. 

Neglecting quantities of the order of h/E as compared 
can, for example, write the equations for T,’ and MI0 as 

to unity one 

* Small terms by which differ kl and k, are retained because they 
significantly affect some derivatives of cash klc cos k& and 

cod k& sin k,& used in forming Equation (3.15). For example 
(cash k& ws kz()’ = 
6~-*6(3- c2> while, 

kl sinh k$ cos k& - k2 cash k& sin k& = 

if it is assumed that k, = k, = k. = d 3/K, 

then (cash koc cos ko()’ = kO(sinh ko[ cos kof - cash ko[ sin Lo& z 
- K4p. 
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T,0=-2(l-v)$&-q [(Aposh kE cos kE + B,stikk sin kg + 

+A ZcoshklE cos k& + B,stik,E sink&) cos 291 

M1O=.- EhS {?[(A 
6 (i+v)W at6 

lCosh kF, cos kE + Blsiti kE sin kg) cos 2~1 + 

+ ~(6 + &)(A, k,%cosk,%cos2v) + [$$+ g)+ 

+ (1 +2y) & + ~(2 + ~)&](B,~tik~%sink~% cos2cp)} 

and similarly simple expressions for T,,', A',', M,,'. On the basis of 
these expressions conditions (3.14) become 

&A, - aIB, + a,A2 - b2B, = c1xv6 

blAl - aIB, -a2’A2 - b2’B, = c2xe8 

bl’ Al - al’Bl + a,A, - b,B, = c3xe7 

b,‘A, - a,‘B, - a3’A2 - b,‘B, = 0 

(3.15) 

where' 

a, =cotikp coskp, a,’ =siti kp cos kp -ccoshkp sin kp 

b, =ti kp sinkp, b,’ =cosh kpsinkp +sinhkpcoskp 

::;;;;~(Pp-~L3 + F=;;*,) a2'=6vx-6 

b 8 a 
l 2v V, a3 c 18~~~ 

b 3z 18~"~ (6 - p2 + l- */2v), a3 ',_18~-~'p[2(2-v)(3- p2)+17-- 8v] 

b 3’z 36 (2 - v)x-~P, c1= 3/16v(1 + v>(3p2-v)(R4~0/~3fi) 

c2 = 3/4 (1 _I- v) (Ii2 - v”) (R”q, /h%), c3 = 9/gv (1 + v) p (X4q, / VE) 

From (3.X), assuming C1 << p << K and neglecting quantities of the 
order of h/R as compared to unity, we obtain 

11, = - ; !h$ (1 _k v) (1 _ v2) %-6 si*x;rzr; ;;FLP$l %P 

B1=_;g (1 + v) (1 - qx- 6COShxP Sinxp f~inhxp COSXp 

sinh 2xp + sin 2xp (3.16) 

A2 = ~~~(1 + v), B,= $'$x-2(1 +v)(I+-y) 

l The indicated coefficients in A,, B, were obtained with the aid of 
such approximate equalities as 

Q2 =‘/2xe2 [2hk2shhhp sin kzp - (k12 - kz2boshklp cos k2p] z 9x+ ( p2 - 1) 
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Let us note concurrently the following. On the basis of (3.131, (3.16) 

d;, o%A +&l~~~~ k,gcos 2~ S+$9q1+9COS2~ 

Consequently, the main part of the function @a + @r which is equal to 

differs from the main part of the function Cp defined by Formula (3.7). 
Thus it is established that the change in the coefficients of some oper- 
ators A ik by the quantity 0~~) (which corresponds to the passage from 
(2.5) to (3.1)) can substantially alter the solving function @, corre- 
sponding to the full solution of the boundary-value problem. Utilizing 
(3.16) and neglecting quantities of the order of h/R as compared to 
unity, we find 

(U 0 0 
1 ’ “2 ’ U3 

’ are displacements corresponding to a01 

TIC = q,R {2(1 -v*)[l + 2jI (Q] -j- v(v- 3E2)} cos2q 

T," = q,R /l/? 1: - 2 (1 - v') 3t2f2 (&)I cos 2r+ 
il I 12o z T21o = q,R [4(1 - Y')x/~(E) + 3vE] sin2q 

i\',O = - 2 (1 - v') q,, Rxj8 (EJ cos 2~; 

lY,O z= - 2q,R [ (1 - Y’) fI (E) _t “it! v] sin 2rp 

MI0 = y0 R* I($ - 6) II (r;) + “,I2 v’] cos 2 cp 

_&~," -;1 Qufi'V [(I - V')fl(Q -{-. l/q COS 2rp 

M120(2:~~21c = 2 (1 -~)(1 - %2) qoRzr.-1f4(ZJ sin 2~ 

(3.18) 
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Taking into account the limitation K-’ << p << K and keeping 

that 151 <P, it is easy to obtain the following evaluations: 

I fl 65) I < 3, 112 (8 I < 3, lf&)l<1.5~ lf4M I< 1 

'Ihe quantities ulo and T,’ are therefore negligibly small as 

785 

in mind 

.5 

compared 
to u1 ’ and T,’ which correspond to the solution Qp,. Ccmsequently 

(3..1’3) 

zil = 6 (1 - v’) R& E cos 29, ~,=6(l-~~)~,e; -l-iv R4%/=2 
> 

sin?q 

1(,=12(1-v~)~~~~~-1-$vjcos~(1., T,=~(~-v~)~~>cos~~ 

till correspond to the solution a, + a,. 

Also, from (3.18) and (3.12) 
responding to the solution Go + 
force T,. 

it follows that the state of stress cor- 
cPl is practically determined by the 

‘&us, based on the relations of elasticity (3.1), the cylindrical 
shell, subjected to the pressure (3.6) with the boundary conditions 
(3. lo), obtains practically the same state of stress as that based on 
the relation (2.5). Likewise, the same displacement I+ is obtained, but 
the displacements u2, u3, which are of the same order as ul, are differ- 
ent. For p Q d/2 (I Q 2d2 R) v = 0.3, the difference in the maximum 
absolute values of I+ (i.e. 1 u3 1 when E = 0) is 5 per cent, as can be 
seen from Formulas (3.8), (3.9). Although this discrepancy is not large, 
it is important that it does not depend on h/R in this regard it is 
significant. It is understood that the indicated discrepancy is not con- 
nected with the displacement of the shell as a rigid body, since such a 
displacement is defined by the quantities ul, uz, ug of the form 

ui = a + a’coscp + ansincp, U, = b + (b’ + a’ E) sin ‘p + (b” - a”E) COS ‘p 

uQ = (b’ + a’ E) cos cp - (b” - uR g) sin cp 

(a, a’> a’?,. b, b’j b’!.are arbitrary constants). The fact that the differ- 
ence between the two derived values of displacements uz, u3 (see (3.8)) 
(3.19)) is proportional to v is due to the fact that the difference be- 
tween the corresponding coefficients in Equations (3.4), (3.5) is also 
proportional to v (see (2.41, (3.3)). 

Analogous results are obtained if instead of (3.1) one utilizes the 
relations of elasticity which differ from (2.5) only by the formula 
Ti = [Eh/(l- 
(Ki + VK3_ 

v2)1 (E i + v~3_ i) or the formula Yi = - [Eh3/12(1 - v2)1 x 

i). As far as the simplification of Formula (2.5) for Ti by 
means of eliminating one of the quantities xi6 i or hKi is concerned, in 
the general case it is without foundation: these quantities, generally 
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speaking, are of the same order of magnitude.* 

4. Il-ie example presented is not unique. Similar examples occur for 
any loading of the type q = Q<[> cos ny5, where n = 2, 3, . . . . and Q(t) 
a polynomial of second or third power. 'Ihen Equations (3.4), (3.5) have 
particular solutions (of the same form as 4) for which the term with the 
large factor p1 vanishes in l&pressions (2.4), (3.3), while the terms 
which distinguish Expressions (Z-4), (3.3) from one another are not 
negligibly small as compared to the other terms in these expressions if 
n is relatively small. Such solutions, apparently, differ substantially 
(in the above-indicated sense) from one another (with the increase in n 

the difference decreases, therefore n = 2 in the case considered). The 
presence of these particular solutions of Equations (3.4), (3.5) for 
certain boundary conditions leads to significantly different functions @, 
which causes a substantial difference in the corresponding displacements. 

In these examples the differences in maximum stresses became negligibly 
small (relative difference is of the order of O(h/R)). Examples of a 
different kind can be given when the elasticity relations (2.5), (3.1) 
formally lead to substantially different maximum stresses. This differ- 
ence occurs not because of the differences in the solving function, but 
for another reason. The reason is that for certain discontinuous load- 
ings, in the formulas defining the internal force factors by means of the 
solving function, the terms possessing a singularity depend on the choice 
of the elasticity relations, particularly the relations for bending 
moments. 

Let us turn to the case when a tangential force Q1 (in the axial 
direction) or Qz (in the circumferential direction), uniformly distributed 
on a rectangular element 0, acts on a cylindrical shell surface. 'lhe 
element u is bounded by two segments of generators with the length 2a= 
2Ra and two arcs of lengths 2b = 2R/3. In this case, of all internal 
force factors, only N, = Nz(') is unbounded (for Q1 acting) or N, = N,(') 
(for Qz acting). 'Ihey are unbounded in the neigh~rhood of the corner 
points (with the coordinates 5 = f a, (b= t j3) of the loaded element o, 
and to them correspond the maximum stresses (this does not contradict 
the Kirchhoff-Love hypothesis in the above-presented formulation). On 
the basis of the elasticity relations coinciding in regard to Ti, Mi with 
(3.1), the following asymptotic formulas were obtained in 15 1 for N,(l) 
and Nlt2): 

* One should note that for the cylindrical shell the discarding of 

Xif i in Formula (2.5) for Ti does not alter Equation 42.3). 
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N,(2) z T G $$ In p 

(‘p t P)” 

Here s = 4ab is the surface of the element o, while h is the thick- 
ness of the shell which in [5 1 is denoted by 2h. In utilizing the 
elasticity relations (2.5) one obtains other, more harmonious formulas 

lhey differ from the preceding* ones by 33.3 per cent and 58.2 per 
cent respectively, independently of the value of h/R. 

In this case, one can justify the simplified relations (3.1) only on 
practical grounds, pointing out the following circumstances. If a and b 
are conrnensurate with R, then the N,( I) and N,(*) forces determined from 
the asymptotic formulas are, respectively, smaller (in magnitude) than 

while the forces T,“’ and Tzt2), roughly speaking, are characterized by 
the quantities Q,/R and Q,/R. Therefore, the forces N2(l) and N,(*) can 
exceed T,(l) and TzC2), respectively, only at points which are extremely 
near the corners, at a distance of r = Rp < h(R/h) exp (-R*/h*) << h. 

From the elasticity relations used in [ 5 I, the forces Ng(l) and NlC2) 
are expressed by means of the solving function with the aid of the 
operators containing, respectively, the following combinations of 
eighth-order derivatives (from the various derivatives entering into 
these operators only the eighth derivatives possess singularities): 

Instead of these expressions one obtains the following ones by 
using the relations (2.5): 

(z+v)&+(3+2v)& + v&&-&7 

as a8 as as 
2 ag7a'p + (3-v) aESaq -22y qsaq- (I -I- I) a$ a97 

This then leads to the indicated difference in the asymptotic formulas. 



788 V.M. Darevskii 

In practice, however, instead of having corner points, the boundary of 
the o-element will be rounded with radii which are larger than the given 
values of r. Also larger than these values of r will be the width of a 
zone adjacent to the boundary of CT where the actual loading will be 
attenuated. Consequently, in this case, 
N2 (1) and NZf2) 

the existence of points at which 
are primary is unrealistic. If, however, a and b are 

sufficiently small, then the element CT can be considered practically as 
an oval-shaped region with a varying radius r = Rp, and it may be assumed 
that the largest value of the forces T,(l), N,(l) (TZf2), Nlf2)) will 
approximately equal the values of these forces on the boundary of the u- 
element, due to the action of the force Q1(Q2) located at the center of 
u. They can be found from the asymptotic formulas derived in [ 5, pp. 169, 
170 1, from which it follows that ~2(~)(N~(z)) can be larger than T,(l) 
(TZC2)) only for r << h, which is also unrealistic. 

Nevextheless, in the theoretical sense, one cannot neglect to con- 
sider the difference in the derived asymptotic formulas. 

S. In connection with the question considered, one should mention 
16 3. In it, basically, the following conclusion was drawn: based on the 
Kirchhoff-Love hypothesis, the elasticity relations should be assumed in 
the simplest form, i.e. they should be expressed as for the plate, Ibis 
conclusion is based on the fact that the hypotheses, more general than 
the Kirchhoff-Love hypothesis, lead to the formula for M, in particular, 
which differs from the corresponding formula (2.5) by three additional 
terms, one or maybe two of which (the evaluation of the second term in 
I6 1 is not sufficiently substantiated) are of the same order of magni- 
tude as the term c 1 in the referred formula (2.5). Strictly speaking, 
nothing yet follows from this, since the algebraic sum can be a quantity 
of higher order of smallness than the individual terms. Also, even if 
the sum of the three indicated additional terms is a quantity of the 
same order as the first one of them, it is not impossible that under 
even more general hypotheses or by using the equations of the theory of 
elasticity, the correction to Formula (2.5) for M, (at least for a 
particular class of problems) will be a quantity of higher order of 
smallness than the eI- term in this formula. Finally, the various correc- 
tions in the elasticity relations, being of the same order of magnitude, 
can affect the solution by different amounts (see footnote on p. 786). 
lberefore, there is no sufficient basis for asserting that the error in- 
troduced by the Kirchhoff-Love hypothesis is a quantity of the same 
order of magnitude as the corrections obtained by means of improvement 
in the simplest relations of elasticity, even if only the relations for 
Ti and Mi are considered. As far as such corrections are concerned, they 
can be substantial, as has been established. Note, by the way, that the 
effects developed here from the simplification of Formulas (2.5) for 
T,, M, are also obtained by simplification of Formulas (2.5) for 
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T i, 3- i’ M. a, 3- i’ 

Thus the consideration presented in 11 1 , the results of 12 1 and the 
investigation carried out in the present paper lead to the following 
conclusion: if, in addition to the error of the Kirchhoff-Love hypothesis, 
one admits only an error of the order of h/R, then, in the general case 
(for an arbitrary shell and loading), it is unlawful to replace the rela- 
tions of elasticity (1.12) by simpler formulas than (2.5). 

6. I n conclusion, we 
utilized example of the 
(3.6) and with boundary 
interest. 

note a curious fact,, in view of which the 
cylindrical shell, subjected to the pressure 
conditions (3.10), becomes of independent 

Let us set, q0 = q,h2/R2 

ing 56 p < d (R/h) 

in Equation (3.6), where q, = 1 kg/cm2. Assum- 
we find that for sufficiently small h/R the quantity 

max 1 ql is arbitrarily small. E?ut, meanwhile, there will be acting in the 
shell a rigorously constant (non-attenuated) along the length, axial 
force T,, self-equilibrated at each end of the shell, and equal to 6Rq* 
cos 2# according to Formula (3.9) (this quantity remains constant as 
max 1 q 1 decreases with a decrease in h/R). The stress corresponding to 
this force, (T~ = 6Rh-1 q, cos 2+ will be arbitrarily large inasmuch as 
h/R is regarded sufficiently small. For example, for p = 3, (1 = 6R) and 
h/R = l/400 we will have max ( q 1 = 0.000376 kg/cm2, i.e. the pressure is 
practically absent. J3ut due to this negligible pressure, the force T, = 
6 Rq+cos 2q5, which is self-equilibrated at each end of the shell, remains 
rigorously constant along the whole length of the shell, whereby max 
1 o1 1 = 2400 kg/cm 2. Should the pressure q be rigorously equal to zero, 
then on the strength of the Saint-Venant principle, the end-equilibrated 
force T, f 0 could not remain constant along the length of the shell. 
‘Ihe example presented is qualitatively different from the known case 
when the surface loading is rigorously equal to zero, while the self- 
equilibrated load T, at each end of the shell remains constant. only 
practically along the length of the shell because of quite slow attenu- 
ation (such a case can be realized if one should take for (9 Expression 
(3.13) with A, = B, = A, = 0 and assume &atic boundary conditions which 
are satisfied for the given choice of (P). 
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